Combining Discrete and Neural Features for Sequence Labeling
نویسندگان
چکیده
Neural network models have recently received heated research attention in the natural language processing community. Compared with traditional models with discrete features, neural models have two main advantages. First, they take low-dimensional, real-valued embedding vectors as inputs, which can be trained over large raw data, thereby addressing the issue of feature sparsity in discrete models. Second, deep neural networks can be used to automatically combine input features, and including non-local features that capture semantic patterns that cannot be expressed using discrete indicator features. As a result, neural network models have achieved competitive accuracies compared with the best discrete models for a range of NLP tasks. On the other hand, manual feature templates have been carefully investigated for most NLP tasks over decades and typically cover the most useful indicator pattern for solving the problems. Such information can be complementary the features automatically induced from neural networks, and therefore combining discrete and neural features can potentially lead to better accuracy compared with models that leverage discrete or neural features only. In this paper, we systematically investigate the effect of discrete and neural feature combination for a range of fundamental NLP tasks based on sequence labeling, including word segmentation, POS tagging and named entity recognition for Chinese and English, respectively. Our results on standard benchmarks show that state-of-the-art neural models can give accuracies comparable to the best discrete models in the literature for most tasks and combing discrete and neural features unanimously yield better results.
منابع مشابه
Linear matrix inequality approach for synchronization of chaotic fuzzy cellular neural networks with discrete and unbounded distributed delays based on sampled-data control
In this paper, linear matrix inequality (LMI) approach for synchronization of chaotic fuzzy cellular neural networks (FCNNs) with discrete and unbounded distributed delays based on sampled-data controlis investigated. Lyapunov-Krasovskii functional combining with the input delay approach as well as the free-weighting matrix approach are employed to derive several sufficient criteria in terms of...
متن کاملAN INTELLIGENT FAULT DIAGNOSIS APPROACH FOR GEARS AND BEARINGS BASED ON WAVELET TRANSFORM AS A PREPROCESSOR AND ARTIFICIAL NEURAL NETWORKS
In this paper, a fault diagnosis system based on discrete wavelet transform (DWT) and artificial neural networks (ANNs) is designed to diagnose different types of fault in gears and bearings. DWT is an advanced signal-processing technique for fault detection and identification. Five features of wavelet transform RMS, crest factor, kurtosis, standard deviation and skewness of discrete wavelet co...
متن کاملTransition-Based Neural Word Segmentation
Character-based and word-based methods are two main types of statistical models for Chinese word segmentation, the former exploiting sequence labeling models over characters and the latter typically exploiting a transition-based model, with the advantages that word-level features can be easily utilized. Neural models have been exploited for character-based Chinese word segmentation, giving high...
متن کاملNeural Networks for Open Domain Targeted Sentiment
Open domain targeted sentiment is the joint information extraction task that finds target mentions together with the sentiment towards each mention from a text corpus. The task is typically modeled as a sequence labeling problem, and solved using state-of-the-art labelers such as CRF. We empirically study the effect of word embeddings and automatic feature combinations on the task by extending ...
متن کاملApplication of Radial Basis Neural Networks in Fault Diagnosis of Synchronous Generator
This paper presents the application of radial basis neural networks to the development of a novel method for the condition monitoring and fault diagnosis of synchronous generators. In the proposed scheme, flux linkage analysis is used to reach a decision. Probabilistic neural network (PNN) and discrete wavelet transform (DWT) are used in design of fault diagnosis system. PNN as main part of thi...
متن کامل